
Visual Basic Variable Naming
and Coding Guidelines
Naming Variables
Data Types
Use the following three letter prefixes to indicate a variables data type:

Data Type
Prefix
Example

Boolean
bln
blnFound

Currency
cur
curRevenue

Date (time)
dat
datStart

Double
dbl
dblTolerance

Error
err
errOrderNum

Integer
int
intQuantity

Long
lng
lngDistance

Object
obj
objCurrent

Single
sng
sngAverage

string
str
strFName

User-defined type
udt
udtEmployee

Variant
vnt
vntCheckSum

Control Types

2 Part # Part Head

Use the following three letter prefixes to indicate a controls type:

Control Type
Prefix
Example

Animation button
ani
aniMailBox

Checkbox
chk
chkReadOnly

Combo box, Drop down list box
cbo
cboEnglish

Common dialog control
dlg
dlgFileOpen

Communications
com
comFax

Control (Used within procedures when the specific type is unknown)
ctr
ctrCurrent

Data control
dat
datBiblio

Directory list box
dir
dirSource

Drive list box
drv
drvTarget

File list box
fil
filSource

Form
frm
frmEntry

Frame
fra
fraLanguage

Gauge
gau
gauStatus

Graph
gra
graRevenue

Grid
grd
grdPrices

Horizontal scroll bar
hsb
hsbVolume

Filename: MSGRIDA1.DOT Project: Microsoft Design template for body chapters, part openings, and appendixes. SIZE: Standard. GRID: A
Template: Author: Loriw Last Saved By: Lori Walker
Revision #: 307 Page: 2 of 1 Printed: 00/00/00 00:00 AM
!Unexpected End of Expression

3 Part # Part Head
Image

img
imgIcon

Key state
key
keyCaps

Label
lbl
lblHelpMessage

Line
lin
linVertical

List box
lst
lstPolicyCodes

MAPI message
mpm
mpmSentMessage

MAPI session
mps
mpsSession

MCI
mci
mciVideo

MDI child form
mdi
mdiNote

Menu
mnu
mnuFileOpen

OLE control
ole
oleWorksheet

Outline control
out
outOrgChart

Pen Bedit
bed
bedFirstName

Pen Hedit
hed
hedSignature

Pen Ink
ink
inkMap

Picture
pic
picVGA

Picture clip
clp
clpToolbar

Report control
rpt
rptQtr1Earnings

Filename: MSGRIDA1.DOT Project: Microsoft Design template for body chapters, part openings, and appendixes. SIZE: Standard. GRID: A
Template: Author: Loriw Last Saved By: Lori Walker
Revision #: 307 Page: 3 of 1 Printed: 00/00/00 00:00 AM
!Unexpected End of Expression

4 Part # Part Head
Shape controls

shp
shpCircle

Spin control
spn
spnPages

Text Box
txt
txtLastName

Timer
tmr
tmrAlarm

Vertical scroll bar
vsb
vsbRate

Database Objects
Use the following three letter prefixes to indicate database objects:

Data Object
Prefix
Example

Database
db
dbAccounts

Dynaset object
ds
dsSalesByRegion

Field Object
fd
fdAddress

Index object
ix
ixAge

QueryDef object
qd
qdSalesByRegion

Query*
Qry (suffix)
SalesByRegionQry

Snapshot object
ss
ssForecast

Table object
tb
tbCustomer

TableDef object
td
tdCustomers

* Using a suffix for queries allows each query to be sorted with its associated table in
Access dialogs (Add Table, List Tables Snapshot).
Filename: MSGRIDA1.DOT Project: Microsoft Design template for body chapters, part openings, and appendixes. SIZE: Standard. GRID: A
Template: Author: Loriw Last Saved By: Lori Walker
Revision #: 307 Page: 4 of 1 Printed: 00/00/00 00:00 AM
!Unexpected End of Expression

5 Part # Part Head

When writing online Help examples for data access topics, you may want to use the
above prefixes as variable names. Here are some examples:
Dim DB As Database, DS As Dynaset
Dim TB As Table, strSQLStmt As String
Const DB_READONLY = 4 ' Set constant.
Set DB = OpenDatabase("BIBLIO.MDB") ' Open database.
' Set text for the SQL statement.
strSQLStmt = "SELECT * FROM Publishers WHERE State = 'NY'"
' Create the new Dynaset.
Set DS = DB.CreateDynaset(strSQLStmt, DB_READONLY)

Menu Naming Conventions
Applications frequently use an abundance of menu controls; thus necessitating a
different set of naming conventions for these controls. Menu control prefixes should be
extended beyond the initial mnu label by adding an additional prefix for each level of
nesting, with the final menu caption at the end of the name string. For example:

Menu Caption Sequence
Menu Handler Name

Help Contents
mnuHelpContents

File Open
mnuFileOpen

Format Character
mnuFormatCharacter

File Send Fax
mnuFileSendFax

File Send Email
mnuFileSendEmail

When this convention is used, all members of a particular menu group are listed next to
each other in the object drop-down list boxes (in the code window and property
window). In addition, the menu control names clearly document the menu items to
which they are attached.

Coding Guidelines
Setting Environment Options
Use Option Explicit (Require Variable Declaration)
Declaring all variables saves programming time by reducing the number of bugs
caused by typos (for example, aUserNameTmp vs. sUserNameTmp vs.
sUserNameTemp). In the Environment Options dialog, set Require Variable
Declaration to Yes. The Option Explicit statement requires you to declare all the
variables in your Visual Basic program.
Save Files as ASCII Text (Visual Basic Only)
Saving form (.FRM) and module (.BAS) files as ASCII text facilitates the use of
version control systems and minimizes the damage that can be caused by disk
corruption. In addition, you can:

Use your own editor
Use automated tools, such as grep
Create code generation or CASE tools for Visual Basic

Filename: MSGRIDA1.DOT Project: Microsoft Design template for body chapters, part openings, and appendixes. SIZE: Standard. GRID: A
Template: Author: Loriw Last Saved By: Lori Walker
Revision #: 307 Page: 5 of 1 Printed: 00/00/00 00:00 AM
!Unexpected End of Expression

6 Part # Part Head

Perform external analysis of your Visual Basic code
To have Visual Basic always save files as ASCII text, from the Environment Options
dialog, set the Default Save As Format option to Text.

Commenting Your Code
All procedures and functions should begin with a brief comment describing the
functional characteristics of the routine (what it does). This description should not
describe the implementation details (how it does it) because these often change over
time, resulting in unnecessary comment maintenance work, or worse yet - erroneous
comments. The code itself and any necessary in-line or local comments will describe
the implementation.
Parameters passed to a routine should be described when their functions are not
obvious and when the routine expects the parameters to be in a specific range. Function
return values and global variables that are changed by the routine (especially through
reference parameters) must also be described at the beginning of each routine.
Routine header comment blocks should look like this (see the next section "Formatting
Your Code" for an example):
Procedure Header Comment Blocks

Section
Comment Description

Purpose
What the routine does (not how).

Inputs
Each non-obvious parameter on a separate line with in-line comments.

Assumes
List of each non-obvious external variable, control, open file, etc.

Returns
Explanation of value returned for functions.

Effects
List of each effected external variable, control, file, etc. and the affect it has (only if this is
not obvious)

Every non-trivial variable declaration should include an in-line comment describing the
use of the variable being declared.
Variables, controls, and routines should be named clearly enough that in-line
commenting is only needed for complex or non-intuitive implementation details.
An overview description of the application, enumerating primary data objects, routines,
algorithms, dialogs, database and file system dependencies, etc. should be included at
the start of the .BAS module that contains the project's Visual Basic generic constant
declarations.

Note
The Project window inherently describes the list of files in a project, so this overview
section only needs to provide information on the most important files and modules, or
the files the Project window doesn't list, such as initialization (.INI) or database files.

Formatting Your Code
Because many programmers still use VGA displays, screen real estate must be
conserved as much as possible, while still allowing code formatting to reflect logic
structure and nesting.
Filename: MSGRIDA1.DOT Project: Microsoft Design template for body chapters, part openings, and appendixes. SIZE: Standard. GRID: A
Template: Author: Loriw Last Saved By: Lori Walker
Revision #: 307 Page: 6 of 1 Printed: 00/00/00 00:00 AM
!Unexpected End of Expression

7 Part # Part Head

Standard, tab-based, block nesting indentations should 4 spaces (the default).
The functional overview comment of a routine should be indented one space. The
highest level statements that follow the overview comment should be indented one tab,
with each nested block indented an additional tab.
For example:
'***
'Purpose: Locates first occurance of a specified user in the UserList array.
'Inputs: strUserList(): the list of users to be searched
' strTargetUser:the name of the user to search for
'Returns: The index of the first occurance of the rsTargetUser in the rasUserList array.
' If the target user is not found, return -1.
'***
Function intFindUser (strUserList() As String, strTargetUser as String) As Integer
Dim i As Integer ' Loop counter.
Dim blnFound As Integer ' Target found flag.
intFindUser = -1
i = 0
While i <= Ubound(strUserList) and Not blnFound

If strUserList(i) = strTargetUser Then
blnFound = True
intFindUser = i

End If
Wend

End Function

Constants
Variables and non-generic constants should be grouped by function rather than by
being split off into isolated areas or special files. Visual Basic generic constants such as
HOURGLASS should be grouped in a single module to keep them separate from
application-specific declarations.

Operators
Always use & when concatenating strings and + when working with numerical values.
Using + to concatenate may cause problems when operating on two variants. For
example:
vntVar1 = "10.01"
vntVar2 = 11
vntResult = vntVar1 + vntVar2 ' vntResult = 21.01
vntResult = vntVar1 & vntVar2 ' vntResult = 10.0111

Miscelaneous
Creating Strings for MsgBox, InputBox, and SQL
Queries
When creating a long string, use multiple lines of code so the string is easily readable
by the programmer. This technique is particularly useful when displaying a MsgBox,
InputBox, or creating a SQL string.
Dim Msg as String
Msg = "This is a paragraph that is to be "
Msg = Msg & "in a message box. The text is "
Msg = Msg & "broken into several lines of code"
Msg = Msg & "in the source code, making it easier"
Msg = Msg & "for the programmer to read and debug."
MsgBox Msg

Dim QRY as String
QRY = "SELECT *"
QRY = QRY & " FROM Titles"
Filename: MSGRIDA1.DOT Project: Microsoft Design template for body chapters, part openings, and appendixes. SIZE: Standard. GRID: A
Template: Author: Loriw Last Saved By: Lori Walker
Revision #: 307 Page: 7 of 1 Printed: 00/00/00 00:00 AM
!Unexpected End of Expression

8 Part # Part Head
QRY = QRY & " WHERE [Year Published] > 1988"
TitlesQry.SQL = QRY

Filename: MSGRIDA1.DOT Project: Microsoft Design template for body chapters, part openings, and appendixes. SIZE: Standard. GRID: A
Template: Author: Loriw Last Saved By: Lori Walker
Revision #: 307 Page: 8 of 1 Printed: 00/00/00 00:00 AM
!Unexpected End of Expression

